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Shear induced melting of smectic-A liquid crystals
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An analysis of shear induced melting of homogeneously aligned smectic-A liquid-crystal material is pre-
sented. The solution is based on a Landau expansion of the complex smectic order parameter and its spatial
derivative. Two solution branches are obtained and it is suggested that, in practice, shear induced melting
involves a transition from one branch to the melt state.@S1063-651X~98!01906-0#
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INTRODUCTION

Smectic-A liquid crystals have both orientational and p
sitional molecular order@1#. The uniaxial orientational orde
parameter can be expressed in the form

s5 1
2 ^~3 cos2u21!&, ~1!

whereu is the local molecular tilt fluctuation away from th
mean orientation. The positional order in the smecticA
phase consists of a density modulation along the ave
molecular axis. Within the layers there is only very-sho
range ordering and the behavior is liquidlike. If the loca
density modulation amplitude is represented byr and the
local layer phase angle byF, then to first order the smecti
behavior can be expressed through the complex order pa
eter

c5r exp iF~r !, ~2!

where in the bulk materialF would have the layer periodic
ity along the molecular axis and be independent of directi
normal to this@2#. In practice both the nematic and smec
order parameters may be modified during shear; here
the latter is considered.

A presentation of order parameter modification throu
externally imposed deformations on smectic-A systems was
de Gennes’s analogy between smectic-A materials and super
conductors@3#. It was suggested that a smectic-A to nematic
phase transition could be induced through a bend defor
tion, i.e., the smectic-A phase could be caused to melt in
the nematic phase. Alternatively, edge dislocations co
form to take up the smectic layer thickness changes. Wh
occurs would depend critically on the Landau-Ginsburg
rameter@3#. In the case of shear considered here smo
deformations and continuum behavior are assumed; me
is then the only option. Marignan and co-workers have c
sidered the case of instabilities in smectic-A layers@4,5# in-
duced by oscillating shear. The instabilities observed w
therefore due to dynamic effects and while melting may h
been involved in the defect formation it was not the fund
mental mechanism investigated.

Quasistatic shear induced melting of smectic-A liquid
crystals has been investigated experimentally by Cagnon
Durand @6#. In their work a thin layer of homogeneous
571063-651X/98/57~6!/6706~5!/$15.00
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aligned smectic-A liquid crystal was subjected to a slow o
cillatory shear. Simultaneously they measured the sh
stress transferred between the plates forming the liqu
crystal cell, i.e., through the liquid-crystal smectic laye
The key observation is that this shows a periodicity tha
spatially equal to the smectic layer pitch for this material,
independently measured by x-ray diffraction. This was e
plained as being due to the smectic layering melting a
reforming periodically during the shearing process. Cagn
and Durand gave a mathematical description based o
simple algebraic order parameter. Here we present an an
sis based on a Landau expansion of the complex order
rameter@Eq. ~2!#. Smectic order parameter melting effec
have also been observed at grain boundaries in bent sme
A liquid crystals@7#.

MODEL

We consider the nematic order parameters to be a fixed
quantity and examine how shear modifies the complex sm
tic order parameterc. The coupling between the paramete
has been discussed by Linhananta and Sullivan@8#. We set
up a coordinate system with the smectic layers in they-z
plane, the layer normal and molecular axis being in thex
direction. Cell surfaces are in thex-y plane and shear the
takes place in thex-z plane, along thex axis. In order to
simplify the Landau energy expansion@9# we assume that the
molecular axis remains in thex direction during shear. This
is reasonable as it equates to the assumption that the sm
layer thickness is proportional to the cosine of any molecu
tilt relative to the local smectic layer normal. Making th
assumption also removes the need to include any nematic
orientational elastic distortion terms in the expression. W
can then write

f 5Aucu21
B

2
ucu41CUdc

dzU
2

, ~3!

where the third term has been simplified from that presen
by de Gennes and Prost@9# by the above assumptions.

Before discussing the meaning of the terms in Eq.~3! it is
useful to substitute from Eq.~2! and write

f 5Ar21
B

2
r41CF S dr

dzD
2

1r2S df

dzD 2G , ~4!
6706 © 1998 The American Physical Society
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57 6707SHEAR INDUCED MELTING OF SMECTIC-A LIQUID . . .
where we have defined

f~z!5F~r !2F8~x!,

F being independent of they direction and having constan
shear-independent periodicity in thex direction. The first two
Landau terms define the equilibrium bulk smectic order
rameter and perturbations away from this value will cost
ergy. There are additional energy terms associated with
dients in the order parameter amplitude and phase. The l
gradient is equivalent to tilting the director away from t
smectic layer normal and the associated energy can eq
be considered as the first term in the Landau expansion
induced molecular tilt, commonly used to model the smec
A to smectic-C phase transition@10#.

Euler-Lagrange equations inr andf follow from Eq. ~4!
as

2Ar12Br312CrS df

dzD 2

22C
d2r

dz2 50, ~5!

2Cr2S df

dzD5K8, ~6!

where K8 is a constant, the implications of which will b
discussed later. Eliminating thedf/dz term gives

2Ar12Br31
K82

2Cr322C
d2r

dz2 50 ~7!

as a single equation inr requiring solution. Defining

r 5
r

re
,

Z5zA2A

C
,

K5
2K82B2

4A3C
,

wherere5A2A/B ~A,0 in the smecticA phase!, allows us
to rewrite Eq.~7! as

2r 1r 31
K

r 32
d2r

dZ2 50. ~8!

Before looking at solutions to this equation it is wor
considering qualitatively what might take place during she
For small amounts of shear we expect a corresponding s
tilt to be introduced in the smectic layers, for very large sh
molecular tilt becomesp/2 and no solution is expected, an
for intermediate shear we expect melting into the nem
phase to occur. Assuming that this melting is localiz
~which is expected on energy grounds!, it is likely to occur
either at the surface or in the center of the cell, which will
dictated by the boundary conditions applied. In this reg
the smectic order parameter will tend towards zero and
smectic layer phase change will become concentrated a
melt point. If complete melting takes place then a discon
nuity in the layer phase can occur and the layers may s
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along to a new position. If shearing continues this proc
could repeat, leading to periodic shear stress: This will
discussed in greater detail later.

SOLUTIONS

We will set up the problem with fixed boundary cond
tions of r 51 at both surfaces. This is equivalent to sayi
that the surface anchoring is strong and that the smectic o
parameter at the surfaces is equal to its bulk equilibri
value and is fixed at this value; also the smectic layer p
odicity at the surfaces is fixed at its equilibrium value, i.
the smectic layer thickness at the surfaces is always equ
its natural size. We believe this to be a reasonable assu
tion as it should be determined by the phase history of
material and fixed at this value because surface diffusio
quite slow. Setting the surfaces atZ56d/2, we then expect
melting to occur at the origin~i.e., in the center of the cell!
for the boundary conditions we have used. Our constantK is
a control parameter in the solution of Eq.~8!; once a solution
is found the corresponding smectic layer phase angle ca
determined through Eq.~6!.

For very thick devices~i.e.,d→`! some analytic progres
can be made in the solution of Eq.~8!. Multiplying through
by dr/dZ allows the equation to be integrated once w
respect toZ, giving

22r 21r 42
2K

r 2 52S dr

dZD 2

1D,

where the constantD can be eliminated knowing that asZ
→` we havedr/dZ→0 andr→1. At Z50 we can also se
dr/dZ50 ~by symmetry! and r 5r m . We can then write

K5
2r m

2 2r m
4 21

2~12r m
22!

, ~9!

which for this case is a relationship between the control
rameterK and the minimum normalized smectic order am
plitude r m ~at the origin!. This relationship is illustrated in
Fig. 1 ~continuous line!. The result is particularly interesting
indicating that, at least for very thick devices, depending
the control parameterK there are three regions of interest.~i!
If K,0.125 there are two solutions with differing values
the minimum amplitude of smectic ordering (r m). In the
limit of K→0 these two solutions haver m→1 andr m→0.
The former of these solutions must ber 51 everywhere as
we have used this as the boundary condition: This assu
thatr is not ‘‘enhanced’’ by any possible shear process. S
stitution of K→0 back into Eq.~6! shows that ifr is finite
throughout the device thendf/dz is identically zero. Thus,
as might be expected, this solution corresponds to the cas
no shear. The second solution forK→0 hasr m→0 ~i.e., r
→0 at the origin!. This must correspond to complete meltin
at this point. Substitution into Eq.~6! now shows thatdf/dz
is identically zero everywhere except at the origin, where
is undefined. Again this is as we might expect: In the m
state the smectic layers are uniform, with any phase s
taken up at the origin where the material is effectively ne
atic. In this case Eq.~8! has a tanh-like analytic solution
which is shown as a dashed line in Fig. 2. This relates
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6708 57S. J. ELSTON AND M. J. TOWLER
rectly to thick cells, i.e., those whered is much greater than
the width of the melt region.~ii ! If K50.125 there is iden-
tically one solution.~iii ! If K.0.125 there are no solutions t
Eq. ~8!.

In order to investigate the solutions further we use a
merical approach to solving Eq.~8!. Here we use a finite
thickness of device,d/252A5, chosen to show a ‘‘nice’’
melting solution. The chosen illustrative thickness is of t

FIG. 1. Plot of the relationship between the control parameteK
and the minimum smectic orderr m ~located at the origin!. The
continuous line is the analytic solution for an infinitely thick devi
and the discrete points are the numerical solution for a devic
normalized thickness62A5.

FIG. 2. Set of numerically determined curves forr . As the
minimum value ofr decreases the melting is concentrated arou
the origin. The point corresponding to the maximum value ofK is
indicated. The dashed line shows the analytic~tanh-like! solution
for K50 in a very thick device.
-

e

order of the in-layer smectic coherence length~i.e., around
100 Å!, allowing the melt region to take up a significa
portion of the solution space. Results are, however, also
resentative of the central region of a thicker cell, as can
seen from the analytic limit discussed in the preceding pa
graph. Although the boundary conditions considered h
dictate that the melt always occurs in the center of the c
we would expect that in practice small perturbations in
boundary conditions may shift the melting point towards o
surface. A shooting method is used in the analysis, where
initial slope~at Z52d/2! is adjusted untilr 51 at the oppo-
site surface. This process is undertaken for a range of va
of the control parameterK in order to find a complete solu
tion set. The relationship betweenK and r m in this case is
also illustrated in Fig. 1~by the discrete points!. Although
the change to a finite thickness has perturbed the relat
ship, the form is as before, and again forK smaller than
some critical value the solutions are paired. The correspo
ing set of solutions to Eq.~8! ~r as a function ofZ! is shown
in Fig. 2. We see that asr m decreases the region becom
narrower, being concentrated around the origin. For co
pleteness we also wish to consider the corresponding s
tion to Eq.~6!, which is available directly by substitution an
numerical integration. In our normalized form Eq.~6! be-
comes

r 2S df

dZD5AK. ~10!

This has a solutionf5f(Z) and we also define the tota
shearDf by integrating this over the normalized thickness
6d/2. The Df relationship to the control parameterK is
illustrated in Fig. 3, which is analogous to the result sho
in Fig. 1. The set of solutions forf as a function ofZ is
shown in Fig. 4.

of

d

FIG. 3. Plot showing the relationship betweenDf ~the total
shear! and the control parameterK. The direction traveled around
the loop asr m decreases from 1 to 0 is clockwise. This curve
analogous to that shown in Fig. 1.
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DISCUSSION

This solution set is very interesting. The increasing ste
ness in the center of the device~at Z50! corresponds to
decreasingr m in Fig. 2. Clearly this does not, however, co
respond to monotonically increasingDf. It is difficult to see
directly from this what happens physically and the quali
tive understanding outlined above needs refinement. Ap
ently, increasing the shear from zero to the maximum va
observed in Fig. 4 would not cause melting. However, th
are no solutions beyond this point, so what happens if furt
shear is applied? In order to understand what takes place
must consider the energy as a function of the shear dista
This is easily obtained by numerically integrating Eq.~4!
using the solutions we have obtained for the smectic or
amplitude and phase. We scale the energy to be21 for the
equilibrium state~before shear is applied!. A plot of energy
againstDf is shown in Fig. 5. This also shows the ener
calculated for the melt state~or branch!, which is of course
independent ofDf becausef is not defined at the melting
point.

What we expect to take place when a device is shea
now becomes clear. Initially we move along the energy-Df
line, starting at the lower left-hand corner. However, atDf
;4.34 the energy of the melt state is crossed. States a
this line ~the shaded region in Fig. 5! are therefore not globa
minima. Physically, there are two possibilities.~i! If a nucle-
ation point or layer structure defect site is present then
may expect local melting to occur in this region as soon
the melt state energy is crossed. This may be expecte
seed melting, which then grows throughout the device.~ii ! If
no nucleation points are present then we may expect to
tinue to move along the shearing branch, even though th
at a higher energy: We might call this a supersheared s
This would continue until we meet the end of this branc
where we are forced to jump directly to the melt state~si-

FIG. 4. Set of curves for the local shear of the smectic lay
~phase anglef! across a device. The increasing steepness in
center of the device corresponds to the decreasing minimum s
tic ordering in this region. Note that this does not correspond t
monotonically increasing total shear.
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multaneously for the whole cell!.
The calculation we have performed is of course qua

static and in the process of jumping branches there will
some dynamics of liquid-crystal reorientation involved. Th
it is reasonable to expect that at the point where melt
occurs ~by either of the mechanisms discussed above! the
layering will re-form one step back, at some point low
down the energy-Df line. If shearing continues this proces
could repeat, leading to steps in the surface shear stress
period equal to the layer spacing. This process will, howev
be highly dependent on device thickness. For a thick~much
greater than the smectic coherence length! device a moderate
amount of shear will be required before any such process
take place; thus the periodic shear stress will be precede
a monotonically increasing shear stress. For a thin~much
less than the smectic coherence length! device, however, we
expect melting to take place much earlier; if the device
sufficiently thin this may occur for shears of less than on
half the smectic layer spacing. In this case the melt state
be formed and will exist for shears up to the point where
state with opposite shear can form, which would show ne
tive shear stress. During the melt state the measured su
shear stress will be dictated by material viscosity. Continu
shearing would again lead to periodicity.

It is further interesting to note that with differing bound
ary conditions the solution set could be somewhat more c
plex. For values of the control parameterK between zero and
its maximum value consideration of Eq.~8! indicates that the
solution space forr can be broken into three regions. The
regions are defined by the valuesr 50, r 51, and the two
solutions ofr 4(12r 2)5K; in these regions the curvature o
r is respectively positive, negative, and positive. For e
ample, if K50.05 then in the region 0,r ,0.5098 the cur-
vature ofr is positive, in the region 0.5098,r ,0.9715 the
curvature ofr is negative, and in the region 0.9715,r ,1

s
e
c-
a

FIG. 5. Dependence of normalized energy on total shear.
dashed line indicates the energy corresponding to the melt s
whereDf is not defined. Where the solution crosses the melt s
energy ~at Df;4.34! a branch jump may take place, leading
melting of the smectic layers.
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6710 57S. J. ELSTON AND M. J. TOWLER
the curvature ofr is again positive. With the boundary con
dition we have used~r 51 at the surfaces! this allows two
solutions: one in which the curve remains in the reg
0.9715,r ,1 and one in which the curve crosses throu
the region 0.5098,r ,0.9715 and into the region 0,r
,0.5098, this is what we have observed. However, if
launch point of the curve~boundary condition! is such that at
the surfacesr is in the region 0.5098,r ,0.9715 then it is
possible that the curve could cross between this region
the lower positive curve region one or more times. Intere
ingly, these solutions are similar to those for Jeffrey-Ham
flows between nonparallel walls@11# and could be worthy of
further investigation. Finally, it should also be noted th
ys
e

nd
t-
l

t

with ‘‘free’’ ~Neumann! boundary conditions onr ~i.e.,
dr/dZ50 at the surfaces!, melting occurs simultaneously fo
all Z. This takes place at the point in shear wheredf/dZ
51 or df/dz5(2A/C)1/2.

It appears that the mathematics developed here may
able to explain periodic shear stress, but there is a ric
solution set than that observed experimentally by Cag
and Durand.
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